Effective methods for increasing aggregate diversity in recommender systems

Mahmut Özge Karakaya, Tevfik Aytekin

Research output: Contribution to journalArticlepeer-review

37 Citations (Scopus)

Abstract

In order to make a recommendation, a recommender system typically first predicts a user’s ratings for items and then recommends a list of items to the user which have high predicted ratings. Quality of predictions is measured by accuracy, that is, how close the predicted ratings are to actual ratings. On the other hand, quality of recommendation lists is evaluated from more than one perspective. Since accuracy of predicted ratings is not enough for customer satisfaction, metrics such as novelty, serendipity, and diversity are also used to measure the quality of the recommendation lists. Aggregate diversity is one of these metrics which measures the diversity of items across the recommendation lists of all users. Increasing aggregate diversity is important because it leads a more even distribution of items in the recommendation lists which prevents the long-tail problem. In this study, we propose two novel methods to increase aggregate diversity of a recommender system. The first method is a reranking approach which takes a ranked list of recommendations of a user and reranks it to increase aggregate diversity. While the reranking approach is applied after model generation as a wrapper the second method is applied in model generation phase which has the advantage of being more efficient in the generation of recommendation lists. We compare our methods with the well-known methods in the field and show the superiority of our methods using real-world datasets.

Original languageEnglish
Pages (from-to)355-372
Number of pages18
JournalKnowledge and Information Systems
Volume56
Issue number2
DOIs
Publication statusPublished - 1 Aug 2018
Externally publishedYes

Keywords

  • Aggregate diversity
  • Collaborative filtering
  • Diversity
  • Recommender systems
  • Scalability

Fingerprint

Dive into the research topics of 'Effective methods for increasing aggregate diversity in recommender systems'. Together they form a unique fingerprint.

Cite this