TY - GEN
T1 - Extracellular and Intracellular Fluid Shifts on the Onset of Transcutaneous Auricular Vagus Nerve Stimulation
AU - Ulgen, Y.
AU - Buyuksarac, B.
AU - Tunc, B.
AU - Solmaz, H.
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/7
Y1 - 2019/7
N2 - In this paper, we propose multifrequency body impedance measurement technique for monitoring the onset of vagus nerve stimulation. In response to transcutaneous electrical vagus stimulation, changes occur in body fluids i.e. fluid shifts in extracellular and intracellular media that can be assessed by Cole parameters Re and Ri before and after stimulus, by measuring single side impedance spectroscopy (from 3 kHz to 1MHz) between wrist and ankle. Following a resting period of 5 minutes in supine position, auricular vagus nerve was stimulated for 3 minutes and BIS performed every 10 seconds, on 23-27 years old, 5 healthy subjects. During the stimulation phase, either an increase or a decrease was observed in extracellular and intracellular fluids. In 3 of the subjects, an ECF decrease of 0.02% per kg was compensated by 0.02 to 0.06% per kg increase in ICF; with a correlation coefficient of -0,70 to -0,79; suggesting fluid shifts between ECF and ICF. With the other 2 subjects, both ECF and ICF decreased by about 0.02% per kg. The study was performed with a limited number of participants; to reach statistically meaningful results measurements will be performed over a larger sample size.
AB - In this paper, we propose multifrequency body impedance measurement technique for monitoring the onset of vagus nerve stimulation. In response to transcutaneous electrical vagus stimulation, changes occur in body fluids i.e. fluid shifts in extracellular and intracellular media that can be assessed by Cole parameters Re and Ri before and after stimulus, by measuring single side impedance spectroscopy (from 3 kHz to 1MHz) between wrist and ankle. Following a resting period of 5 minutes in supine position, auricular vagus nerve was stimulated for 3 minutes and BIS performed every 10 seconds, on 23-27 years old, 5 healthy subjects. During the stimulation phase, either an increase or a decrease was observed in extracellular and intracellular fluids. In 3 of the subjects, an ECF decrease of 0.02% per kg was compensated by 0.02 to 0.06% per kg increase in ICF; with a correlation coefficient of -0,70 to -0,79; suggesting fluid shifts between ECF and ICF. With the other 2 subjects, both ECF and ICF decreased by about 0.02% per kg. The study was performed with a limited number of participants; to reach statistically meaningful results measurements will be performed over a larger sample size.
UR - http://www.scopus.com/inward/record.url?scp=85077863901&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2019.8857412
DO - 10.1109/EMBC.2019.8857412
M3 - Conference contribution
C2 - 31947423
AN - SCOPUS:85077863901
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 6888
EP - 6891
BT - 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
Y2 - 23 July 2019 through 27 July 2019
ER -