Abstract
The green hydrogen production via water splitting is a highly promising method for eventual fossil fuel replacement, which causes many harmful products. Water electrolysis is one particularly dependable method of bridging primary renewable energy with stable hydrogen energy. In this study, the Fe2O3@CuO-400 is fabricated via simple hydrothermal process and is employed for green hydrogen production. The structure-engineered Fe2O3@CuO-400 exhibits enhanced activity, achieving a lower overpotential of 130 mV during 10 mA cm−2 and a smaller Tafel slope of 77 mV/dec for hydrogen evolution reaction. Conversely, the Fe2O3@CuO-400 nanocomposite exhibits 230 mV of overpotential & 54 mV/dec of Tafel slope for OER. The electronic interaction between Fe2O3 and CuO inside the heterojunction adjusted the electrical configuration between Cu and Fe improving the kinetics of the reaction, which enhanced the efficiency of hydrogen production. Hence, this study proposes a new avenue for producing heterostructure-based catalysts, which are beneficial for electrochemical applications in future.
Original language | English |
---|---|
Pages (from-to) | 1004-1014 |
Number of pages | 11 |
Journal | International Journal of Hydrogen Energy |
Volume | 61 |
DOIs | |
Publication status | Published - 3 Apr 2024 |
Externally published | Yes |
Keywords
- FeO@CuO
- HER
- Long term stability
- Nanocomposite
- OER