TY - GEN
T1 - Numerical solution of Neumann-type elliptic SIP with non-local integral and mixed boundary conditions
AU - Ashyralyyev, Charyyar
N1 - Publisher Copyright:
© 2023 Author(s).
PY - 2023/10/9
Y1 - 2023/10/9
N2 - In this study, we propose the first order of accuracy difference scheme for approximate solution of Neumann-type elliptic source identification problem (SIP) with mixed boundary and non-local integral conditions. We obtain stability and coer-cive stability estimates for solution of difference problem. Finally, we present computation results on test example.
AB - In this study, we propose the first order of accuracy difference scheme for approximate solution of Neumann-type elliptic source identification problem (SIP) with mixed boundary and non-local integral conditions. We obtain stability and coer-cive stability estimates for solution of difference problem. Finally, we present computation results on test example.
UR - http://www.scopus.com/inward/record.url?scp=85177671896&partnerID=8YFLogxK
U2 - 10.1063/5.0175279
DO - 10.1063/5.0175279
M3 - Conference contribution
AN - SCOPUS:85177671896
T3 - AIP Conference Proceedings
BT - AIP Conference Proceedings
A2 - Cakalli, Huseyin
A2 - Kocinac, Ljubisa D. R.
A2 - Ashyralyev, Allaberen
A2 - Harte, Robin
A2 - Dik, Mehmet
A2 - Canak, Ibrahim
A2 - Kandemir, Hacer Sengul
A2 - Tez, Mujgan
A2 - Ozay, Gurtug
A2 - Savas, Ekrem
A2 - Aral, Nazlim Deniz
A2 - Ucgun, Filiz Cagatay
A2 - Ashyralyyev, Charyyar
A2 - Akay, Kadri Ulas
PB - American Institute of Physics Inc.
T2 - 6th International Conference of Mathematical Sciences, ICMS 2022
Y2 - 20 July 2022 through 24 July 2022
ER -