Regional Push-out Bond Strength and Coronal Microleakage of Resilon after Different Light-curing Methods

Emre Nagas, Zafer C. Cehreli, Veli Durmaz, Pekka K. Vallittu, Lippo V.J. Lassila

Research output: Contribution to journalArticlepeer-review

52 Citations (Scopus)

Abstract

The purpose of this study was to assess the push-out bond strength and coronal microleakage of the Epiphany (Pentron Clinical Technologies, Wallingford, CT) + Resilon (Resilon Research LLC, Madison, CT) obturation system with respect to different photoactivation methods used. Roots of human maxillary central incisors (n = 60) were prepared with 0.06 taper nickel-titanum rotary files to size 30. After application of the Epiphany sealer, the roots were obturated with Resilon cones. The specimens were randomly assigned into three groups (n = 10/group) according to the light-curing unit (LCU) used from the coronal aspect: (1) quartz-tungsten-halogen/40 seconds, (2) light-emitting diode/20 seconds, and (3) plasma arc/6 seconds. Thereafter, 2-mm thick horizontal sections (n = 3) were obtained from each specimen from the coronal to apical direction and subjected to push-out test at a crosshead-speed of 1mm/min. Failure modes were assessed quantitatively under a stereomicroscope and morphologically under a scanning electron microscope. The remaining 30 roots were used for the dye-leakage assessments. Both the type of LCU and the level of sectioning had significant effects on bond strength. The following statistical ranking was obtained for bond strength values: quartz-tungsten-halogen > light-emitting diode > plasma arc. Coronal microleakage of specimens cured with the plasma arc was significantly greater than those of other groups (p < 0.05).

Original languageEnglish
Pages (from-to)1464-1468
Number of pages5
JournalJournal of Endodontics
Volume33
Issue number12
DOIs
Publication statusPublished - Dec 2007
Externally publishedYes

Keywords

  • Light curing units
  • micro push-out test
  • microleakage
  • resilon

Fingerprint

Dive into the research topics of 'Regional Push-out Bond Strength and Coronal Microleakage of Resilon after Different Light-curing Methods'. Together they form a unique fingerprint.

Cite this