TY - JOUR
T1 - Secure Industrial IoT Systems via RF Fingerprinting Under Impaired Channels With Interference and Noise
AU - Gul, Omer Melih
AU - Kulhandjian, Michel
AU - Kantarci, Burak
AU - Touazi, Azzedine
AU - Ellement, Cliff
AU - D'Amours, Claude
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2023
Y1 - 2023
N2 - Industrial IoT-enabled critical infrastructures are susceptible to cyber attacks due to their mission-critical deployment. To ensure security by design, radio frequency (RF)-based security is considered an effective way for wirelessly monitored or actuated critical infrastructures. For this purpose, this paper presents a novel augmentation-driven deep learning approach to analyze unique transmitter fingerprints and determine the legitimacy of a user device or transmitter. An RF fingerprinting model is susceptible to various channel and environmental conditions that impact the learning performance of a machine/deep learning model. As data gathering cannot always be considered a feasible alternative, efficient solutions that can tackle the impact of varying propagation channels on learning performance are emergent. This work aims to shed light on the RF fingerprinting problem from a different angle when 4G, 5G, and WiFi data samples are collected from different transmitters by proposing a fine-grained augmentation approach to improve the learning performance of a deep learning model. This work also proposes an enhanced classifier structure following the fine-grained augmentation approach. Results of experiments, conducted on the POWDER dataset, demonstrate promising RF fingerprinting performance when training data are augmented in a waveform-specific fine-grained manner. Thus, the RF identification accuracy can be boosted to 97.84% on unseen RF data instances from our previously published work where we had achieved an accuracy of 87.94% using tapped delay line (TDL)/clustered delay line (CDL)-based augmentation approach. The paper also presents a sensitivity analysis of the fine-grained approach concerning different signal-to-noise-ratio (SNR), signal-to-interference-ratio (SIR) levels (20 dB and 30 dB), and signal-to-interference-plus-noise-ratio (SINR) levels (15 dB, 25 dB). The sensitivity analysis exhibits that it achieves 85.78% accuracy at 20 dB SIR on both Day 1 (train) and Day 2 (test) data. In addition, it achieves 92.37% accuracy even at 20 dB SNR on Day 2 data from POWDER dataset. Furthermore, it achieves 84.95% accuracy at 15 dB SINR on Day 2 data. Hence, these results exhibit the resiliency of the fine-grained augmentation approach against interference and noise.
AB - Industrial IoT-enabled critical infrastructures are susceptible to cyber attacks due to their mission-critical deployment. To ensure security by design, radio frequency (RF)-based security is considered an effective way for wirelessly monitored or actuated critical infrastructures. For this purpose, this paper presents a novel augmentation-driven deep learning approach to analyze unique transmitter fingerprints and determine the legitimacy of a user device or transmitter. An RF fingerprinting model is susceptible to various channel and environmental conditions that impact the learning performance of a machine/deep learning model. As data gathering cannot always be considered a feasible alternative, efficient solutions that can tackle the impact of varying propagation channels on learning performance are emergent. This work aims to shed light on the RF fingerprinting problem from a different angle when 4G, 5G, and WiFi data samples are collected from different transmitters by proposing a fine-grained augmentation approach to improve the learning performance of a deep learning model. This work also proposes an enhanced classifier structure following the fine-grained augmentation approach. Results of experiments, conducted on the POWDER dataset, demonstrate promising RF fingerprinting performance when training data are augmented in a waveform-specific fine-grained manner. Thus, the RF identification accuracy can be boosted to 97.84% on unseen RF data instances from our previously published work where we had achieved an accuracy of 87.94% using tapped delay line (TDL)/clustered delay line (CDL)-based augmentation approach. The paper also presents a sensitivity analysis of the fine-grained approach concerning different signal-to-noise-ratio (SNR), signal-to-interference-ratio (SIR) levels (20 dB and 30 dB), and signal-to-interference-plus-noise-ratio (SINR) levels (15 dB, 25 dB). The sensitivity analysis exhibits that it achieves 85.78% accuracy at 20 dB SIR on both Day 1 (train) and Day 2 (test) data. In addition, it achieves 92.37% accuracy even at 20 dB SNR on Day 2 data from POWDER dataset. Furthermore, it achieves 84.95% accuracy at 15 dB SINR on Day 2 data. Hence, these results exhibit the resiliency of the fine-grained augmentation approach against interference and noise.
KW - Deep learning
KW - Internet of Things (IoT)
KW - data augmentation
KW - radio frequency fingerprinting
KW - secure design
KW - unmanned aerial vehicles
UR - http://www.scopus.com/inward/record.url?scp=85151372522&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2023.3257266
DO - 10.1109/ACCESS.2023.3257266
M3 - Article
AN - SCOPUS:85151372522
SN - 2169-3536
VL - 11
SP - 26289
EP - 26307
JO - IEEE Access
JF - IEEE Access
ER -