TY - JOUR
T1 - Structural, optical, magnetic, photocatalytic activity and related biological effects of CoFe2O4 ferrite nanoparticles
AU - Yalcin, B.
AU - Ozcelik, S.
AU - Icin, K.
AU - Senturk, K.
AU - Ozcelik, B.
AU - Arda, L.
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2021/5
Y1 - 2021/5
N2 - The synthesis of magnetic nano-sized spinel ferrites has become an important area of research, due to their several potential applications. In this work, CoFe2O4 nanoparticles were synthesized by the co-precipitation method. Structural, magnetic, and photocatalytic properties of cobalt ferrites were analyzed based on their chemical composition considering their biological properties. Structural and morphological properties were investigated by X-ray diffraction analysis (XRD) and scanning electron microscope (SEM), respectively. Lattice parameters and cell volumes were calculated from XRD data. SEM images revealed uniform surface morphology and spherical shape of nanoparticles. Magnetization measurements were measured by using Lake Shore 7304 model Vibrating Sample Magnetometer (VSM). In hemolytic activity tests, formation of a precipitate with a characteristic black color provided an explicit evidence to the formation of heme–iron complexes. Undesirable hemolytic effect of CoFe2O4 nanoparticles on human erythrocytes at both concentrations was attributed to the comparatively high amount of reactive oxygen species formed by CoFe2O4 nanoparticles. The theoretical concentration Co (theory) obtained by second-order model (0.82 mg/L) fit with the experimental value of Co (experimental) (0.95 mg/L) well in photocatalytic activity tests.
AB - The synthesis of magnetic nano-sized spinel ferrites has become an important area of research, due to their several potential applications. In this work, CoFe2O4 nanoparticles were synthesized by the co-precipitation method. Structural, magnetic, and photocatalytic properties of cobalt ferrites were analyzed based on their chemical composition considering their biological properties. Structural and morphological properties were investigated by X-ray diffraction analysis (XRD) and scanning electron microscope (SEM), respectively. Lattice parameters and cell volumes were calculated from XRD data. SEM images revealed uniform surface morphology and spherical shape of nanoparticles. Magnetization measurements were measured by using Lake Shore 7304 model Vibrating Sample Magnetometer (VSM). In hemolytic activity tests, formation of a precipitate with a characteristic black color provided an explicit evidence to the formation of heme–iron complexes. Undesirable hemolytic effect of CoFe2O4 nanoparticles on human erythrocytes at both concentrations was attributed to the comparatively high amount of reactive oxygen species formed by CoFe2O4 nanoparticles. The theoretical concentration Co (theory) obtained by second-order model (0.82 mg/L) fit with the experimental value of Co (experimental) (0.95 mg/L) well in photocatalytic activity tests.
UR - http://www.scopus.com/inward/record.url?scp=85105475472&partnerID=8YFLogxK
U2 - 10.1007/s10854-021-05752-6
DO - 10.1007/s10854-021-05752-6
M3 - Article
AN - SCOPUS:85105475472
SN - 0957-4522
VL - 32
SP - 13068
EP - 13080
JO - Journal of Materials Science: Materials in Electronics
JF - Journal of Materials Science: Materials in Electronics
IS - 10
ER -