TY - JOUR
T1 - A new efficient error control algorithm for wireless sensor networks in smart grid
AU - Yigit, Melike
AU - Sarisaray Boluk, Pinar
AU - Gungor, V. Cagri
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2019/3
Y1 - 2019/3
N2 - Error detection and correction is an important issue in the design and maintenance of a smart grid communication network to provide reliable communication between sender and receiver. Various error-control coding techniques are employed to reduce bit error rates (BER) in wireless sensor networks (WSNs). The performance of these techniques is also compared and evaluated to find the most suitable technique for WSNs. This is the first study to compare the most efficient coding techniques in the smart grid environment, and it suggests a new error correction algorithm based on this comparison result. Therefore, this article first examines and compares two forward error control (FEC) coding techniques such as Bose-Chaudhuri-Hochquenghem code (BCH) and Reed Solomon code (RS) with various modulation methods including frequency shift keying (FSK), offset quadrature phase-shift keying (OQPSK), and differential phase shift keying (DPSK) in a 500 kV line-of-sight (LoS) substation smart grid environment. Second, as a result of this comparison, a new adaptive error control (AEC) algorithm is proposed. Adaptive error control adaptively changes error correction code (ECC) based on the channel behavior that is observed through the packet error rate (PER) in the recent previous transmissions. The link-quality-aware capacitated minimum hop spanning tree (LQ-CMST) algorithm and the multi-channel scheduling algorithm are used for data transmission over the log-normal channel. Therefore, the performance of compared coding techniques and AEC are also evaluated when multiple channels are used during transmission. Further, AEC is compared with static RS and without-FEC methods based on performance metrics such as the throughput, BER, and delay in different smart grid environments, e.g., 500 kV Substation (LoS), underground network transformer vaults (UTV) (LoS), and main power control room (MPR) (LoS). Our simulation results indicate that the proposed AEC algorithm achieves better performances than all those techniques.
AB - Error detection and correction is an important issue in the design and maintenance of a smart grid communication network to provide reliable communication between sender and receiver. Various error-control coding techniques are employed to reduce bit error rates (BER) in wireless sensor networks (WSNs). The performance of these techniques is also compared and evaluated to find the most suitable technique for WSNs. This is the first study to compare the most efficient coding techniques in the smart grid environment, and it suggests a new error correction algorithm based on this comparison result. Therefore, this article first examines and compares two forward error control (FEC) coding techniques such as Bose-Chaudhuri-Hochquenghem code (BCH) and Reed Solomon code (RS) with various modulation methods including frequency shift keying (FSK), offset quadrature phase-shift keying (OQPSK), and differential phase shift keying (DPSK) in a 500 kV line-of-sight (LoS) substation smart grid environment. Second, as a result of this comparison, a new adaptive error control (AEC) algorithm is proposed. Adaptive error control adaptively changes error correction code (ECC) based on the channel behavior that is observed through the packet error rate (PER) in the recent previous transmissions. The link-quality-aware capacitated minimum hop spanning tree (LQ-CMST) algorithm and the multi-channel scheduling algorithm are used for data transmission over the log-normal channel. Therefore, the performance of compared coding techniques and AEC are also evaluated when multiple channels are used during transmission. Further, AEC is compared with static RS and without-FEC methods based on performance metrics such as the throughput, BER, and delay in different smart grid environments, e.g., 500 kV Substation (LoS), underground network transformer vaults (UTV) (LoS), and main power control room (MPR) (LoS). Our simulation results indicate that the proposed AEC algorithm achieves better performances than all those techniques.
KW - AEC
KW - Bch code
KW - Error detection and correction
KW - Multi-channel scheduling
KW - Rs code
KW - Smart grid
UR - http://www.scopus.com/inward/record.url?scp=85057214313&partnerID=8YFLogxK
U2 - 10.1016/j.csi.2018.11.006
DO - 10.1016/j.csi.2018.11.006
M3 - Article
AN - SCOPUS:85057214313
SN - 0920-5489
VL - 63
SP - 27
EP - 42
JO - Computer Standards and Interfaces
JF - Computer Standards and Interfaces
ER -