TY - JOUR
T1 - Histopathological and Immunohistochemical Evaluation of Pannus Tissue in Patients with Prosthetic Valve Dysfunction
AU - Karakoyun, Süleyman
AU - Ozan Gürsoy, Mustafa
AU - Yesin, Mahmut
AU - Kalçık, Macit
AU - Astarcıoğlu, Mehmet Ali
AU - Gündüz, Sabahattin
AU - Emrah Oğuz, Ali
AU - Çoban Kökten, Şermin
AU - Nimet Karadayı, Ayşe
AU - Tuncer, Altuğ
AU - Köksal, Cengiz
AU - Gökdeniz, Tayyar
AU - Özkan, Mehmet
PY - 2016/1/1
Y1 - 2016/1/1
N2 - BACKGROUND: Prosthetic valve dysfunction due to pannus formation is a rare but serious complication. Currently, limited data are available concerning the pathogenesis and immunohistochemical properties of pannus. The study aim was to investigate the morphological, histopathological and immunohistochemical characteristics of pannus formation in patients with prosthetic valve dysfunction.METHODS: A total of 35 patients (10 males, 25 females; mean age 44 ± 16 years) who had undergone re-do valve surgery due to prosthetic valve obstruction was enrolled in the study. Immunohistochemical studies were aimed at evaluating the expression of alphasmooth muscle actin (α-SMA) and desmin in myofibroblasts and smooth muscle cells; epithelial membrane antigen (EMA) in epithelial cells; and CD34, Factor VIII and vascular endothelial growth factor (VEGF) in endothelial cells. Matrix metalloproteinases (MMPs) -2 and -9, and transforming growth factor-beta (TGF-β) were used to demonstrate cytokine release from macrophages, leukocytes, fibroblasts and myofibroblasts.RESULTS: Pannus appeared as a tough and thick tissue hyperplasia which began from outside the suture ring in the periannular region and extended to the inflow and outflow surfaces of the prosthetic valves. Histopathological analysis showed the pannus tissue to consist of chronic inflammatory cells (lymphocytes, plasma cells, macrophages and foreign body giant cells), spindle cells such as myofibroblasts, capillary blood vessels and endothelial cells laying down the lumens. Calcification was present in the pannus tissue of 19 explanted prostheses. Immunohistochemical studies revealed positive α-SMA expression in all patients, whereas 60.5% of patients were positive for desmin, 50% for EMA, 42.1% for VEGF, 39.5% for TBF-β, 42.1% for MMP-2, 86.8% for CD34, and 97.4% for Factor VIII. MMP-9 was negative in all patients.CONCLUSIONS: Pannus tissue appears to be formed as the result of a neointimal response in periannular regions of prosthetic valves that consist of periannular tissue migration, myofibroblast and extracellular matrix proliferation with vascular components. It is a chronic active process in which mediators such as TGF-β, VEGF and MMP-2 play roles in both matrix formation and degradation.
AB - BACKGROUND: Prosthetic valve dysfunction due to pannus formation is a rare but serious complication. Currently, limited data are available concerning the pathogenesis and immunohistochemical properties of pannus. The study aim was to investigate the morphological, histopathological and immunohistochemical characteristics of pannus formation in patients with prosthetic valve dysfunction.METHODS: A total of 35 patients (10 males, 25 females; mean age 44 ± 16 years) who had undergone re-do valve surgery due to prosthetic valve obstruction was enrolled in the study. Immunohistochemical studies were aimed at evaluating the expression of alphasmooth muscle actin (α-SMA) and desmin in myofibroblasts and smooth muscle cells; epithelial membrane antigen (EMA) in epithelial cells; and CD34, Factor VIII and vascular endothelial growth factor (VEGF) in endothelial cells. Matrix metalloproteinases (MMPs) -2 and -9, and transforming growth factor-beta (TGF-β) were used to demonstrate cytokine release from macrophages, leukocytes, fibroblasts and myofibroblasts.RESULTS: Pannus appeared as a tough and thick tissue hyperplasia which began from outside the suture ring in the periannular region and extended to the inflow and outflow surfaces of the prosthetic valves. Histopathological analysis showed the pannus tissue to consist of chronic inflammatory cells (lymphocytes, plasma cells, macrophages and foreign body giant cells), spindle cells such as myofibroblasts, capillary blood vessels and endothelial cells laying down the lumens. Calcification was present in the pannus tissue of 19 explanted prostheses. Immunohistochemical studies revealed positive α-SMA expression in all patients, whereas 60.5% of patients were positive for desmin, 50% for EMA, 42.1% for VEGF, 39.5% for TBF-β, 42.1% for MMP-2, 86.8% for CD34, and 97.4% for Factor VIII. MMP-9 was negative in all patients.CONCLUSIONS: Pannus tissue appears to be formed as the result of a neointimal response in periannular regions of prosthetic valves that consist of periannular tissue migration, myofibroblast and extracellular matrix proliferation with vascular components. It is a chronic active process in which mediators such as TGF-β, VEGF and MMP-2 play roles in both matrix formation and degradation.
UR - http://www.scopus.com/inward/record.url?scp=85045107717&partnerID=8YFLogxK
M3 - Article
C2 - 27989094
AN - SCOPUS:85045107717
SN - 0966-8519
VL - 25
SP - 104
EP - 111
JO - Journal of Heart Valve Disease
JF - Journal of Heart Valve Disease
IS - 1
ER -