Person identification by using ResNet on hand images

Araştırma sonucu: Kitap/Rapor/Konferans sürecindeki bölümKonferans katkısıbilirkişi

1 Alıntı (Scopus)

Özet

The use of biometric features for surveillance and the identification of people is a very popular theme among researchers. There are various studies focused on this topic using facial features, gait features, audio features. This study aims to identify people by analyzing their hand images with deep learning model. Prior to the training step, all the images are preprocessed. They are smoothened while the edges are preserved by guided filter. The processed images are trained and tested in several models such as ResNet18, ResNet34, ResNet50, ResNet101 models. The obtained results are compared with the results of some other studies on the same dataset.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2024 24th International Conference on Control, Automation and Systems, ICCAS 2024
YayınlayanIEEE Computer Society
Sayfalar1345-1348
Sayfa sayısı4
ISBN (Elektronik)9788993215380
DOI'lar
Yayın durumuYayınlanan - 2024
Etkinlik24th International Conference on Control, Automation and Systems, ICCAS 2024 - Jeju, Korea, Republic of
Süre: 29 Eki 20241 Kas 2024

Yayın serisi

AdıInternational Conference on Control, Automation and Systems
ISSN (Basılı)1598-7833

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???24th International Conference on Control, Automation and Systems, ICCAS 2024
Ülke/BölgeKorea, Republic of
ŞehirJeju
Periyot29/10/241/11/24

Parmak izi

Person identification by using ResNet on hand images' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Bundan alıntı yap