Özet
We discuss the structure of positive definite kernels in terms of operator models. In particular, we introduce two models, one of Hessenberg type and another one that we call near tridiagonal. These models produce parametrizations of the kernels and we describe the combinatorial nature of these parametrizations in terms of lattice paths of Dyck and Lukasiewicz type.
Orijinal dil | İngilizce |
---|---|
Sayfa (başlangıç-bitiş) | 285-300 |
Sayfa sayısı | 16 |
Dergi | Houston Journal of Mathematics |
Hacim | 33 |
Basın numarası | 1 |
Yayın durumu | Yayınlanan - 2007 |
Harici olarak yayınlandı | Evet |