Predicting the onset of quantum synchronization using machine learning

F. Mahlow, B. Çakmak, G. Karpat, I. Yalçlnkaya, F. F. Fanchini

Araştırma sonucu: Dergi katkısıMakalebilirkişi

1 Alıntı (Scopus)

Özet

We have applied a machine learning algorithm to predict the emergence of environment-induced spontaneous synchronization between two qubits in an open system setting. In particular, we have considered three different models, encompassing global and local dissipation regimes, to describe the open system dynamics of the qubits. We have utilized the k-nearest-neighbor algorithm to estimate the long-time synchronization behavior of the qubits only using the early time expectation values of qubit observables in these three distinct models. Our findings clearly demonstrate the possibility of determining the occurrence of different synchronization phenomena with high precision even at the early stages of the dynamics using a machine learning-based approach. Moreover, we show the robustness of our approach against potential measurement errors in experiments by considering random errors in the qubit expectation values, initialization errors, as well as deviations in the environment temperature. We believe that the presented results can prove to be useful in experimental studies on the determination of quantum synchronization.

Orijinal dilİngilizce
Makale numarası052411
DergiPhysical Review A
Hacim109
Basın numarası5
DOI'lar
Yayın durumuYayınlanan - May 2024
Harici olarak yayınlandıEvet

Parmak izi

Predicting the onset of quantum synchronization using machine learning' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Bundan alıntı yap